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Abstract.

The availability of the specification of a component is fundamental to its successful
use during system development. Unfortunately, current practice of constructing
new specifications for composite components does not give much weight to doing
so systematically and consistently considering both their constituents’ specifica-
tions and the semantics of their composition. This technical report presents our
progress on developing an approach to derive interface specifications for composite
components taking into consideration the former aspects. We focus on deriving the
specification of functional properties. Our composites are constructed within the
context of a new component model where first-class connectors are utilised. The
presented approach is based on a set of connector-specific functions, which allow
deriving functional specifications in a systematic and consistent manner.
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Chapter 1

Introduction

Component-based Development (CBD), is a paradigm in Software Engineering based on
the idea of building systems by composing pre-existing software components instead of
starting from scratch. The idea of constructing composite components has been recognised
as a good practice in CBD because it is an alternative not only to abstract complex
behaviour but also to maximise reuse.

A component’s specification defines the component and serves as the sole medium for
the component’s understanding and use. Therefore, to enable its reuse the availability of
a composite component’s specification is very important. In this chapter we discuss this
issue and how it is supported in CBD approaches that allow the generation of composite
components. We will focus on the specification of functional properties and the limitations
found in this context.

1.1 Specification of Software Components

As stated before, a component’s specification defines the component and serves as the
sole medium for the component’s understanding and use by answering questions such as:
What services are offered and requested by the component? How can these services be
used? What quality characteristics do the offered services fulfill? And so on. There is a
common agreement on the information elements that an atomic component specification
should include [10, 30, 13, 2, 12]:

(1) The instantiation mechanisms.

(2) The functional properties.

(3) The non-functional properties.

(4) The information about the deployment environment.

Independently of the form that these information elements take, all of them are crucial
for defining, validating and setting up a component composition.

The idea of constructing composite components has been recognised as good prac-
tice in CBD because it is manner not only to abstract complex behaviour and complex
structure but also to maximise reuse [16]. When we talk about composite components
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we refer to general purpose reusable components made up of an assembly of two or more
atomic components. In general, the issue of being a composite should be transparent for
a component user as a composite component should be utilised in the same manner as
an atomic one.

Given this context, the availability of the specification of a composite component
is very important. In an ideal scenario, the information of a composite’s specification
should be systematically and consistently generated during the component composition
process based on the specifications of its constituent components and the semantics of
their composition. By systematically and consistently we mean enabling the reuse of a
well-defined composition process during different developments. Unfortunately, current
practice of constructing new specifications for composite components does not give much
weight to doing so in this manner. In the following section we discuss this issue.

1.2 Composite Components in CBD Approaches

As introduced before, the idea of constructing composite components has been recognised
as a good practice in CBD. However, producing reusable composite components is not
a trivial task. We believe that a fundamental issue to facilitate composite component
generation in CBD is the availability of a constructive approach to composition. That is,
an approach that when taking two or more components and putting them together in some
way, it results in a new entity that preserves some of the properties of its constituents.
The lack of such an approach may be the reason why, although component composition is
supported, only in some CBD methods component composition enables the construction
of reusable composite components [20].

To illustrate the former, consider component composition in JavaBeans [22]. In Jav-
aBeans beans (i.e. atomic components) are Java classes which adhere to a set of design
and syntactic conventions. These conventions make their storage and retrieval possible
as well as their automatic composition via a visual development environment (i.e. the
BeanBox). When beans are composed, the resulting “composition” takes the form of an
adaptor class.1 However, this class does not preserve the properties of the bean class.
For example, it does not correspond to an entity that can be specified in terms of its
properties, its events and its methods as it can be done for its constituent beans. As a
corollary, the adaptor class cannot be stored, retrieved and (re)used as a bean class can.

There are CBD approaches such as Koala [23], PECOS [33] and UML 2 [1] that
are closer to our notion of composite components. In these approaches the composite
components are specified and composed in the same manner as atomic components.
However, there are some issues that make it difficult to systematically and consistently
specify them.

Koala is a CBD approach used for the construction of softwares in consumer electron-
ics. Koala supports the construction of composite components from pre-existing compo-
nent’s specifications. In this model, specifications are written in the form of interfaces
utilising some sort of Interface Definition Language (IDL). Interfaces can be stored in a
repository and later on retrieved and reused for composite component definition. These
definitions can be compiled to get composites’ implementations in a specific programming

1In JavaBeans, an adaptor class is wrapper class utilised to wire the composed components.
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language. The interfaces in Koala support the specification of various elements relevant
to a component. In this example we focus on the provided and required services (i.e. the
functional properties) as they are the target of the work presented in this paper. Fig. 1.1
shows an outline of the code for (a) an interface and (b) a component specification in
Koala. As can be seen, (a) defines a set of semantically related services in the form of
functions, while (b) defines the actual functionality that a particular component type
(i.e. CTunerDriver) offers and requires in terms of a set of pre-existing interfaces (e.g.
ITuner).

(b)
provides ITuner ptun;

requires II2c ri2c;
}

IInit pini;

interface ITuner{
void SetFrequency(int f);
int GetFrequency(void);

}

(a) component CTunerDriver{

Figure 1.1: (a) An interface and (b) a component specification in Koala.

Fig. 1.2 shows an outline of the code of the specification of the composite compo-
nent CTVPlatform, as well as its graphical representation in Koala notation. As can be
seen, this composite component is defined as an assembly of the components CFrontEnd,
CTunerDriver and CMemDriver.

Required interface

cfre
rif

ptun pini
ctun

fast

ri2c

cmem

pos

pos

pini

rtun

(a) (b)

requires II2c fast;
contains
component CFrontEnd cfre;
component CTunerDriver ctun;

provides IMem pos;

component CTVPlatform{
provides IProgram pini;

component CMemDriver cmem;
connects
pini = cfre.pini;
pos = cmem.pos;
cfre.rtun = ctun.ptun;
cmem.rif = ctun.pini;
ctun.ri2c = fast;

}

pini

Provided interface

Figure 1.2: (a) A composite component specification and (b) its graphical representation
in Koala.

We already mentioned the idea of systematically and consistently generating com-
posites’ functional specifications from the information in the functional specifications of
their constituent components as well as the semantics of their composition. We consider
that it is not achieved in Koala at all. The composite CTVPlatform is specified in the
same manner in which its constituents are (i.e. it defines the functionality that it offers
and requires in terms of a set of pre-existing interfaces). However, the exposed interfaces
IProgram, IMem and II2c result from manually forwarding them from the inner compo-
nents to the enclosing one according to the system developer’s needs rather than from
systematically deriving them based on the semantics of the components’ composition.
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This manner of forwarding interfaces follows the semantics of delegation connectors in
UML 2 [1].2

We also observe that, because of the manner in which they are generated, the possi-
bility of reusing these composites in a different development is limited. Highly-reusable
composites should be useful to build a number of different systems within an application
domain. An alternative to generate a highly-reusable composite is that of providing a
mean to invoke a number of valid sequences of operations offered by its constituents [16].
By adopting a composition approach as the one depicted in Fig. 1.2, not all the con-
stituents’ services are available to invoke in the resulting composite if the constituents’
interfaces have not been forwarded, e.g. the ptun interface. Although it is useful for the
construction of certain types of composites, this ad hoc manner of hiding and exposing the
constituents’ interfaces could represent a shortcoming for the construction of some others.
Note that by forwarding all the constituents’ interfaces, to make their services available
to invoke, one could violate the composition semantics as it could enable invoking invalid
sequences of services.

This process to composite component generation and specification is also adopted by
PECOS [33] and UML 2 [1]. Therefore, they present the same shortcomings discussed in
this section.

1.3 Summary

The idea of constructing composite components has been recognised as good practice in
CBD because it is an alternative not only to abstract complex behaviour and complex
structure but also to maximise reuse. Component specifications play an important role
when composing software components as the information they contain is used to define,
validate and set up a component composition within a specific context. Therefore, to
facilitate their reuse the availability of a composite component specification is also very
important.

We have already mentioned that the functional specification of a composite component
should be directly derivable from the functional specifications of its constituents. While
it is in some degree achievable in some component models, we believe that it is not
addressed in a systematic and consistent manner.

Despite the fact that composite components generated via approaches such as Koala,
PECOS and UML 2 preserve the same shape than its constituents, the approach to
composition is not systematic and requires a lot of human intervention to decide which
interfaces must be forwarded. Besides that, the generated composites are not enough
generic to allow the execution of any valid execution sequence involving the operations
in their constituents.

In the following chapter we introduce how a new approach to composition, based
of first-class connectors, can help not only to improve the reusability of the generated
composite components but also to develop and specify them in a systematic and consistent

2In UML 2, a delegation connector is a connector that links the external contract of a component
(as specified by its ports) to the internal realization of that behaviour by the component’s parts. It
represents the forwarding of signals (operation requests and events): a signal that arrives at a port that
has a delegation connector to a part or to another port that will be passed on to that target for handling.
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manner.
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Chapter 2

A Set of Connectors for Composing
Software Components

As mentioned previously, the concept of composition encapsulates the notion of taking
two or more components and putting them together in some way. Composition should be
constructive. That is, it should result in a new entity that has some of the properties of
its constituents. As discussed in Chapter 1, this view of composition has been neglected
in current CBD approaches. In this chapter we discuss how our connectors fill this gap
and as a corollary, help to make more systematic and consistent the issue of composite
components specification.

2.1 A New View of Connectors

The lack of a constructive approach to component composition makes it difficult the gen-
eration of reusable composite components. We have demonstrated that a new notion of
connectors can tackle this problem [32, 17, 16, 19]. This new notion has been described in
a new component model [18]. In this model components are passive, general-purpose and
do not request services from other components. Instead, components perform their pro-
vided services only when invoked by connectors. Connectors encapsulate communication
schemes; many of them are analogous to well-known patterns [24, 8]. The components
have an interface specification and an implementation. The interface describes the com-
ponent’s provided services (i.e. the functional properties) in terms of a name, the types of
its input parameters and the types of its output parameters. Additionally, this interface
describes the non-functional properties and the deployment context dependencies related
to these services. The implementation corresponds to the services of the component
coded in a programming language.

Fig. 2.1 shows a system architecture in the new component model. It consists of a
hierarchy of connectors (K1−K5) representing the system’s communication and coordi-
nation, sitting on top of components (C1−C6) that provide the services performed by
the system. As can be seen, any connector works as a constructive composition operator.
That is, when applied to components it yields another component so that the resulting
component can in turn be a subject of further composition (see the inner dotted boxes
representing composite components in Fig. 2.1).
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C1 C2
Connector

C6 Composite
Component
System

C3 C4 C5

K1 K2

K5

K4

K3

Figure 2.1: A system architecture in the new component model.

In [32] a catalogue of connectors to allow component composition according to this ap-
proach has been presented. Although these connectors are meant to be used to construct
component-based systems (i.e. development with reuse), they also allow the generation
of composite components (i.e. development for reuse). When using these connectors to
support development for reuse it is possible to generate composite components which are
sufficiently general to cover the different aspects of their use. For example, consider the
situation in which the atomic components C1 and C2 in Fig. 2.1 offer a set of services
common for the construction of sales applications, e.g. billing and shipping services. It is
sensible and convenient to compose these components together in a composite component
as it is illustrated in Fig. 2.1. This composite can be reused for the construction of differ-
ent systems in the same domain. It offers a means to invoke any of the operations in its
constituents, as well as a means to specify the deployment information of the particular
system under construction, e.g. the location of the clients and shipping fares databases.

In this report, we do not explain all the connectors in our catalogue. Detailed descrip-
tions of these connectors and their implementation can be found in [32]. However, for
clarification purposes, we describe the connectors we will use for the construction of the
composites in the case studies in Chapter 4. The descriptions are in terms of the notation
on the right-hand side of Fig. 2.2. The dotted boxes represent the resulting assemblies.
The boxes with the computation label represent the computation in the composed/adapted
component. An edge connecting two diagram elements represents the control flow along
the direction of the edge. Any data required in the assembly to perform the correspond-
ing computation is denoted as the input label. The result generated by the assembly
execution is denoted as the output label.

The table on the left-hand side of Fig. 2.2 lists the connectors in the catalogue. They
are organised in (i) adaptation connectors, (ii) basic composition connectors and (iii)
composite composition connectors. Adaptation connectors are unary connectors which
adapt the component in the sense that before any computation takes place inside the
component, the execution of the control scheme encapsulated by the connector is executed
first. Basic composition connectors are n-ary connectors used to support component
composition. We call them “basic” to differentiate them from composite composition
connectors, which are complex communication schemes. While basic connectors provide
only one type of communication scheme, composite connectors combine many types.

Both the Sequencer and Pipe composition connectors can be used to compose a set
of two or more components, so that the execution of each one of them is carried out in a
sequential order, see Fig. 2.2 (a) and (b). In the case of the Pipe connector, it also models
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output

input

computation 2

computation 1

computation n

(a)

input

output

input

output

output

input

computation 1

computation 2

computation n

(b)

Sequencer

Pipe

Selector

Observer

Guard

Condition−controlled Loop

Counter−controlled Loop

Delay

Category Type

Chain of Responsibility

Connector
Composition
Composite

Connector
Composition
Basic

Connector
Adaptation

[other]

output

input

[expr]

computation
Exclusive Choice Sequencer

(c)

Exclusive Choice Pipe

Simple Merge Sequencer

Simple Merge Pipe

Figure 2.2: The elements in the connector’s catalogue and the behaviour of the assemblies
resulting from the (a) Sequencer, (b) Pipe and (c) Guard connectors.

internal data communication among the composed units, so that the output generated
by a component’s execution becomes the input to the next one in the chain. Fig. 2.2 (c)
depicts the case of the Guard adaptation connector. Any computation in the adapted
component is conditional upon the value of a Boolean expression (expr) being true.

2.2 Summary

In this chapter we described a constructive approach to composition, which enables the
generation of composite components. This approach is described in a new component
model [18]. In this model components are passive, general-purpose and do not request
services from other components. Instead, components perform their provided services
only when invoked by connectors. Connectors encapsulate communication schemes; many
of them are analogous to well-known patterns [24, 8].

The composites generated via this approach are worth of consideration as they are
systematically and consistently constructed and have bigger possibilities of reuse than a
composite generated via approaches as the ones presented in Chapter 1. This claim is
supported by the notion that we can generate composites offering a mean to invoke a wider
combination of the operations in their constituents according to a fixed communication
and coordination scheme.

Now that we have defined the generalities of our component composition approach, in
the following sections we focus on presenting a set of connector-specific functions to derive
the functional specifications of composites components in a systematic and consistent
manner.
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Chapter 3

Functional Specification of
Composite Components

We have outlined a new view of composition where first-class connectors are utilised as
operators for composing software components. In general, if a set of atomic components
are composed by using our approach, then the user of the resulting composite should
be able to execute a number of operation sequences in terms of the operations offered
by the atomic components. The nature and number of all possible sequences should be
determined from both the functional specifications of the atomic components and the
semantics of the connector utilised.

In order to facilitate its reuse, the resulting composite should provide a functional spec-
ification informing about these operation sequences. Ideally, the composite’s functional
specification should be offered in the same form as that of an atomic component. That is,
as a set of provided services. Although in this case, these services should be abstractions
denoting the operation sequences valid to invoke within the composite’s constituents and
their corresponding requirements (e.g. their input parameters) and outcomes (e.g. their
output parameters).

We have realised that our composition approach makes it easier to develop a set of
connector-specific functions to systematically and consistently generate the composites’
functional specifications as outlined above. The semantics of these functions is based on
simple set operations on the elements of the composites’ functional specifications. Next,
we introduce such functions.

3.1 Basic Formalism and Assumptions

As stated before, the functional specification of a component informs about the services
it provides. In most CBD approaches these services are specified as operation signatures.
An operation signature is defined by an operation name and a number of parameters.
Each one of these parameters is defined by a parameter name and a parameter type. We
will denote as Param the parameters in an operation signature. According to the role
that a parameter takes, it is possible to partition the elements in Param to distinguish
among input and output parameters. Based on the former, we define an operation signa-
ture as a tuple

9



 
 

〈InParam,OutParam〉

where InParam and OutParam represent input and output parameters respectively. For
simplicity, from now on we will use the following abbreviations to denote an operation
signature (Sig) and the functional specification (FSpec) of a component (i.e. a set of
operation signatures):

Sig == 〈InParam,OutParam〉
FSpec == P Sig

Note that in these definitions we do not make the operation name of the signature
explicit. However, we assume that each operation signature in a FSpec is associated to
an operation name which works as an identifier for it. Thus, a functional specification
FSpec could contain identical tuples 〈InParam,OutParam〉 as long as these tuples are
associated to different operation names. For example, the

credit 〈{cardId , amount}, {errorCode}〉 and
debit 〈{cardId , amount}, {errorCode}〉.

operation signatures have identical tuples 〈InParam,OutParam〉 but not operation names.
In this basic formalism we will treat Param and its partitions InParam and OutParam

as bags instead of sets to allow for duplication of parameters. A composite component
could be generated from a set of instances of the same component type. For exam-
ple, consider the case of composing three instances of a Dispenser Component (e.g. one
instance for water, one instance for milk and one instance for coffee) into a Coffee Dis-
penser composite component. This results in a composition scenario involving a number
of functional specifications FSpec with the same operation signatures. As we will show
later on, when composing these specifications via certain type of connectors, it could
be required to have multiple occurrences of the same parameter. Note however that,
we assume that operation signatures are well formed. That is, an operation signature
〈InParam,OutParam〉 cannot have the same parameter both as input and output, i.e.
InParam ∩ OutParam = ®. In this work, we also assume that parameters with the same
name and type are semantically equivalent.

Considering this basic formalism and assumptions, we have defined a set of helper
functions to systematically and consistently generate the functional specifications of com-
posite components

3.1.1 Parameter Complement

The function parameter complement (param comp) maps the elements in a set of param-
eters to their complementary ones taking into consideration its role, i.e. either input or
output.
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param comp : Param → Param

param comp = p1, p2, . . . pn ∈ Param •
n⋃

i=1

∼ pi

3.1.2 Signature Input and Output Parameter

The functions signature input parameter and signature output parameter (sig in and
sig out respectively) return the set of input and output parameters of an operation sig-
nature respectively.

sig in, sig out : Sig → Param

s : Sig • sig in(s) = InParam ∧ sig out(s) = OutParam

3.1.3 Signature Match

The function signature (sig match) verifies whether there are common elements among
the output parameters of one operation signature and the input parameters of another.

sig match : Sig × Sig → Boolean

sig match = s1, s2 : Sig • sig out(s1) ∩ sig in(s2) 6= ®

3.1.4 Signature Concatenation

The function signature concatenation (sig concat) works on a set of operation signatures
to generate one whose input and output parameters result from the concatenation of
the input and output parameters on the participating signatures. Note that to specify
the issue of having duplicated elements in InParam and OutParam, we use the

⊎
operator.

sig concat : Sig × . . .× Sig → Sig

sig concat = s1, s2, . . . , sn : Sig • 〈
n⊎

i=1

sig in(si),
n⊎

i=1

sig out(si)〉

3.1.5 Add Input and Output Parameter

functions add input parameter and add output parameter (add in and add out respec-
tively) add input and output parameters to an operation signature respectively.

add in, add out : Param × Sig → Sig

p : Param;
s : Sig •

add in(p, s) = 〈{p ∪ sig in(s)}, sig out(s)〉∧
add out(p, s) = 〈sig in(s), {p ∪ sig out(s)}〉
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3.1.6 Signature Bound

The function signature bound (sig bound) works on a set of operation signatures and
results in one consisting of the union of the given signatures, but with the parameters in
the participating signatures that are complementary removed.

sig bound : Sig × . . .× Sig → Sig

sig bound = s1, s2, . . . , sn : Sig •
〈{sig in(s1) ]
(sig in(s2) \ param comp(sig out(s1))) ]
(sig in(s3) \ param comp(sig out(s2))) ]
. . . ]
(sig in(sn) \ param comp(sig out(sn−1)))},
sig out(sn)〉

3.1.7 Signature Union

The function signature union (sig union) works on a set of operation signatures and re-
sults in a signature consisting of a set of parameters by keeping only one occurrence of
input or output parameters with identical names. As can be seen, we specify it by using
the set union (

⋃
) operator.

sig union : Sig × . . .× Sig → Sig

sig union = s1, s2, . . . , sn : Sig • 〈
n⋃

i=1

sig in(si),
n⋃

i=1

sig out(si)〉

Now that we have presented these helper functions, in the following sections we de-
fine the connector-specific ones corresponding to each one of the connectors presented
in Chapter 2. As we will see, the functional specification of a composite component is
estimated based on the information contained the functional specifications of its con-
stituents.

3.2 Functional Specification Functions for Adapta-

tion Connectors

As introduced in Chapter 2, the Guard connector is an adaptation connector utilised
to guard the execution of an operation in a component upon the value of a Boolean
expression being true. We also introduced the Condition and Counter Loop connectors
which provide a looping control scheme. In the case of the Condition-Controlled Loop
connector, the iterative execution of computation in a component is performed until
a Boolean expression is not satisfied. In the case of the Counter-Controlled Loop the
computation is executed repeatedly a fixed number of times.
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We have defined the guard composite fspec, conditionLoop composite fspec and

counterLoop composite fspec functions to determine the elements in the functional spec-
ification of a composite component generated via a Guard, Condition Loop and Counter
Loop respectively:

guard composite fspec,
conditionLoop composite fspec,
counterLoop composite fspec : InParam × FSpec → FSpec

guard composite fspec,
conditionLoop composite fspec,
counterLoop composite fspec =

s1, s2, . . . , sn : Sig ;
f : FSpec;
p : InParam | #p = 1;

s1, s2, . . . , sn ∈ f •
n⋃

i=1

add in(p, si)

Note that besides the functional specification (FSpec) of the adapted component, these
functions also take one input parameter (InParam). This parameter represents the value
to be evaluated by the connectors Boolean expressions. This parameter is added to the
input parameters of each one of the operation signatures of the adapted component via
the add in helper function.

Now that we have presented the functions corresponding to the adaptation connectors,
next we present the ones defined for the composition connectors.

3.3 Functional Specification Functions for Composi-

tion Connectors

The Sequencer connector is a composition connector utilised to compose a set of two or
more components so that the execution of an operation in each one of them is carried
out in a sequential order. We have defined the seq composite fspec function to determine
the elements in the functional specification of a composite component generated via a
Sequencer :

seq composite fspec : FSpec × FSpec × . . .× FSpec → FSpec

seq composite fspec =
s1, s2, . . . , sn : Sig ;
f1, f2, . . . , fn : FSpec;
(s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn •⋃

(s1,...,sn )∈
∏n

i=1
fi

sig concat(s1, s2, . . . , sn)

The Pipe connector also supports the composition of a set of two or more components
so that the execution of an operation in each one of them is carried out in a sequential
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order. However, in contrast to the Sequencer, it also models internal data communication
among the composed units, so that the output generated by a component’s execution be-
comes the input to the next one in the chain. Thus, we define the pipe composite fspec
function to the determine the functional specification of the resulting composite when it
has been generated via a Pipe connector:

pipe composite fspec : FSpec × FSpec × . . .× FSpec → FSpec

pipe composite fspec =
s1, s2, . . . , sn : Sig ;
f1, f2, . . . , fn : FSpec;
∀ si ∈ (s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn | sig match(si , si+1) = true •⋃

(s1,...,sn )∈
∏n

i=1
fi

sig bound(s1, s2, . . . , sn)

The Selector connector is a composition connector utilised to compose a set of two
or more components so that the execution an operation in only one of them is carried
out based on the evaluation of a Boolean expression. The set of operation signatures in
the functional specification of the resulting composite component can be determined by
using the sel composite fspec function which is defined as follows:

sel composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

sel composite fspec =
s1, s2, . . . , sn : Sig ;
f1, f2, . . . , fn : FSpec;
p : InParam | #p = #(f1 × f2 × . . .× fn);
(s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn •
n⋃

i=1

add in(ipi , si) | ipi ∈ p ∧ si ∈
⋃

(s1,...,sn )∈
∏n

i=1
fi

sig union(s1, s2, . . . , sn)

As in the Guard connector, we have considered a set of input parameters to represent
the value to be evaluated in the Selector conditions.

As described in Chapter 2, we have composite composition connectors made up from
specific arrangements of the Sequencer, Pipe, Selector and Guard connectors. Accord-
ingly, we have defined a set of functions in terms of the defined before to determine the
information in the functional specification of the resulting component when the Observer,
Chain of Responsibility, Exclusive Choice Sequencer, Exclusive Choice Pipe, Simple Merge
Sequencer and Simple Merge Pipe connectors are applied. Next we list such functions.
The function for the Observer connector is defined as follows:

obs composite fspec : FSpec × FSpec × . . .× FSpec → FSpec

obs composite fspec =
f1, f2, . . . , fn : FSpec •
pipe composite fspec(f1, seq composite fspec(f2, . . . , fn))
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The function for the Chain of Responsibility connector is defined as follows:

cr composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

cr composite fspec =
f1, f2, . . . , fn : FSpec;
p : InParam | #p = #(f1 × f2 × . . .× fn); •
seq composite fspec(sel composite fspec(p, f1, . . . , fn))

The functions for the Exclusive Choice Sequencer and the Exclusive Choice Pipe connec-
tors are defined as follows:

ecSeq composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

ecSeq composite fspec =
f1, f2, . . . , fn : FSpec;
p : InParam | #p = #(f1 × f2 × . . .× fn); •
seq composite fspec(f1, sel composite fspec(p, f2, . . . , fn))

ecPipe composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

ecPipe composite fspec =
f1, f2, . . . , fn : FSpec;
p : InParam | #p = #(f1 × f2 × . . .× fn); •
pipe composite fspec(f1, sel composite fspec(p, f2, . . . , fn))

Finally, the functions for the Simple Merge Sequencer and Simple Merge Pipe connectors
are defined as follows:

smSeq composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

smSeq composite fspec =
f1, f2, . . . , fn : FSpec;
p : InParam | #p = #(f1 × f2 × . . .× fn); •
seq composite fspec(sel composite fspec(p, f1, . . . , fn−1), fn)

smPipe composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

smPipe composite fspec =
f1, f2, . . . , fn : FSpec;
p : InParam | #p = #(f1 × f2 × . . .× fn); •
pipe composite fspec(sel composite fspec(p, f1, . . . , fn−1), fn)

3.4 Summary

In this chapter we presented a set of functions to systematically and consistently generate
the functional interface of the composite components generated via our connectors. In
general, these functions work on a a set of functional specifications (FSpec) which inform
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about the services that the composed components provide. The services of a component
are specified as a set of operation signatures. An operation signature can be specified by
a operation name as well as a set of parameters. Each parameter in the set is defined by
a parameter name, parameter type and a parameter role.

In next chapter we present two examples to illustrate the use of these functions.
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Chapter 4

Examples

In order to show the usefulness of the functions defined in the previous chapter, in this one
we discuss the design of a pair of component based systems by using a set of composite
components. The first case is a Drink Selling Machine System and the second one is a
Robotics System.

4.1 The Drink Selling Machine System

Consider the case of constructing a set of systems to control a Drink Vending Machine
from a set of pre-existing components. To simplify this example, the Drink Vending
Machine is limited to two general functions: (1) to sell a drink and (2) to maintain the
dispensers. (1) involves receiving the customer request and payment as well as delivering
the drink. (2) involves filling and emptying the dispensers of the drinks’ ingredients.

4.1.1 The Proposed Architectures

From the former definition, it seems sensible to organise the system design into three
main subsystems: a Cashier Subsystem, a Drink Maker Subsystem and a Maintenance
Subsystem. The Cashier Subsystem and the Drink Maker Subsystem will deal with the
drink payment and drink preparing issues respectively to support the function (1). A
Maintenance Subsystem will support the function (2).

Fig. 4.1 shows (on the left-hand side) the proposed composites to use in the devel-
opment of the Drink Vending Machine systems and (on the right-hand side) examples
of their behaviour using the notation introduced in Chapter 2. Fig. 4.1 (a) depicts a
Coffee Card Cashier composite component, which is made of the Card Reader (CR) and
Billing Component (BC). The Card Reader component is responsible for reading a chip
embedded in a coffee card to get its identifier. The Billing Component is responsible for
debiting and crediting coffee cards. By composing these components with a Pipe (P) and
a Guard connector (G), as depicted on the left-hand side of Fig. 4.1 (a), we can generate
a composite able to behave as shown on the right-hand side of Fig. 4.1 (a). That is, once
a coffee card has been inserted in the card slot of the Coffee Machine and the amount to
debit to it has been specified (e.g. amt), the composite could try to retrieve the card’s
identifier by executing the corresponding service in the Card Reader Component (e.g. get-

CardId). The result of this operation execution can be passed up via de Pipe to the Guard
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connector to check if the identifier is retrieved (e.g. if cardId ! = null). If so, then the
card could be debited by executing the corresponding service in the Billing Component
(e.g. debit) and the resulting execution value will be returned (e.g. errorCode).

(a)

dispense

dispense

errCode2, errCode3
errCode1,

[other]

debit

errCode

[cardId != null]

shots1,
shots2, shots3

Coffee Card
Cashier

Manager

(b)

Basic Dispenser

dispense

cardId, amt

cardId

getCardId

amt

D1 D2 D3

BCCR

P

G

SQ

Figure 4.1: Useful composites for the Drink Vending Machine systems and examples of
their behaviour.

The Basic Dispenser, shown on the left-hand side Fig. 4.1 (b), is a composite compo-
nent made up of a set of three instances of the dispenser component and one Sequencer
connector (SQ). In this composite a Water Dispenser (D1), a Coffee Dispenser (D2) and
a Milk Dispenser (D3) have been considered. Thus, this composite allows the sequen-
tial execution of one service in each one of these components. For example, the dispense

service as depicted on the right-hand side of Fig. 4.1 (b). In this figure, shots1 -shots3
denote the number of shots to be dispense in each one of the dispensers, while error-
Code1 -errorCode3 denote the resulting execution values in each one of the performed
executions.

On the other hand, Fig. 4.2 shows three forms in which the above defined composites,
together with some other architectural elements, can be utilised to define three different
versions of the Drink Vending Machine system. In all the depicted architectures there is a
Selector connector SL which allows the system to decide which branch of the architecture
to execute. Two main branches emerge from the Selector connector, which correspond
to the main system functions (1) and (2).

Fig. 4.2 (a) shows a version of the system in terms of the three subsystems identi-
fied. The Cashier Subsystem comprises the Coffee Card Cashier composite and the Payment
Manager Component (PMgr) –which manages the drinks menu. The Drink Maker Subsys-
tem comprises the Basic Dispenser composite and the Recipe Manager Component (RMgr)
–which manages the drinks recipes. The Maintenance Subsystem comprises the Basic

Dispenser composite only. If the function (1) is required, then the Selector connector SL
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Cashier
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P
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P

G1

P1

SL

P2

SQ

ECP

P

SQ SQ

SQ1

P3

G

Figure 4.2: Three alternative architectures for the Drink Vending Machine system.

will call the Pipe connector P3 and it in turn will call the Cashier Subsystem to deal
with the drink payment. In this subsystem the Pipe connector P1 will first retrieve the
drink’s price by executing the corresponding operation in the Payment Manager Com-
ponent PMgr. Then, it will pass up this information when calling the required operation
in the Coffee Card Cashier composite. After all these payment issues have been performed,
the Pipe connector P3 will pass up the resulting data to the Drink Maker Subsystem.
Internally in this subsystem the Guard connector G1 will allow the execution of the com-
putation down on the hierarchy if the drink payment has been processed. Otherwise it
will stop it. If there was a successful payment, then the Guard connector G1 will call
the Pipe connector P2. This connector will first retrieve the drink’s recipe by executing
the corresponding operation in the Recipe Manager component (RMgr) and then call the
Basic Dispenser composite to perform the dispense of ingredients accordingly. On the other
hand if the function (2) is required, then Selector connector SL will call the corresponding
operation in the Basic Dispenser composite.

Fig. 4.2 (b) shows a version of the system where the Cashier Subsystem has been
modified to allow the customer to pay drinks by using either coffee cards or cash. The
first payment option is supported by the Coffee Card Cashier composite, while the second
one is supported by the Coin Box component (CB). When the function (1) is required,
internally in the Cashier Subsystem an Exclusive Choice Pipe1 connector ECP will first
retrieve the drink’s price from the Payment Manager Component PMgr and then, based
on the payment method selected by the customer, it will direct the execution of the
charge to either the Coffee Card Cashier or the Coin Box component CB. As in the first
version, after all these payment issues have been performed, the Pipe connector P2 will
pass up the resulting data to the Drink Maker Subsystem where the drink preparing
issues are managed. Both the drink preparing and the function (2) are performed in the
same manner as the version of the Drink Vending Machine described before.

Finally, Fig. 4.2 (c) shows a version of the system in which the customer can get drinks
for free. That is the reason why the Cashier Subsystem is not considered. Additionally,
the Basic Dispenser has been further composed to create an Extended Dispenser composite
component. This new composite includes the additional dispenser instances D4 and D5

1The Exclusive Choice Pipe is a composite composition connector that allows executing a computation
in a predecessor component and then, the generated output is passed as input data for the computation
of only one component in a set of successor components.
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for dealing with more ingredients. In the design of the Drink Maker Subsystem the
Guard connector at the top level has been removed as no validation for the success of
the payment is required in this version of the system. The function (2) is performed in
the same manner as the systems described above.

Note that that in these examples the defined composites are used more than once
for the construction of different systems. The Coffee Card Cashier was utilised two times,
while the Basic Dispenser was utilised six times. Thus, they are highly-reusable composites
within this domain context.

Now that we have presented the required assemblies and the manner in which they
can be composed to define the Drink Selling Machine system, in the following section
we demonstrate how the functional specification of these assemblies can be achieved by
utilising the functions defined in Chapter 3.

4.1.2 Composite Component Generation

As stated before, the functional specification of a component as a set of provided services
which are specified as operation signatures. These signatures in turn are defined in terms
of a name and a set of parameters. For clarity purposes, at this starting point we describe
the functional specifications of the atomic components required for composite generation
in a kind of IDL syntax. In this syntax, the keywords in and out denote the role of a
parameter in the operation. In the following sections, we will describe these specifications
using the basic formalism described in Section 3.1.

cardReader
getCardId (out int cardId);

BillingComponent
credit (in int cardId , in int amount ,out int errCode);
debit (in int cardId , in int amount ,out int errCode);
getBalance (in int cardId ,out int amount);

Dispenser
emptyDispenser ();
setTemperature (in int temp,out int errCode);
add (in int shots ,out int errCode);
dispense (in int shots ,out int errCode);

In the following sections we illustrate the use of the defined functions in the the process
of composite generation.
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Functional Specification of the Coffee Card Cashier Composite

As shown in Section 4.1.1, the Coffee Card Cashier composite is an assembly comprising the
Card Reader (CR) and Billing (BC) components as well as the Guard and Pipe connec-
tors. Because of the nature of our composition approach, we will resolve the functional
specification of this composite in a bottom-up manner starting with the assembly involv-
ing the Guard connector and the Billing component. We will consider “in int cardId” as
the parameter to be evaluated by the Guard connector (e.g. if cardId ! = null). Thus,
and adopting the notation introduced in Section 3.1, let f be the BillingComponent’s
functional specification and p be the input parameter to be evaluated by the Guard ’s
Boolean expression:

-- Billing Component Instance CB, operations:

-- credit (in int cardId, in int amount, out int errCode)

-- debit (in int cardId, in int amount, out int errCode)

-- getBalance (in int cardId, out int amount)

f = {〈{cardId , amount}, {errCode}〉,
〈{cardId , amount}, {errCode}〉,
〈{cardId}, {amount}〉}

p = {cardId}

By using the guard composite fspec function we can derive the following set of tuples,
which represent the operation signatures in the functional specification of this assembly:

guard composite fspec : InParam × FSpec → FSpec

guard composite fspec,
conditionLoop composite fspec,
counterLoop composite fspec =

s1, s2, . . . , sn : Sig ;
f : FSpec;
ip : InParam | #ip = 1;

(s1, s2, . . . , sn) ∈ f •
n⋃

i=1

add in(ip, si)

guard composite fspec = {〈{cardId , amount}, {errCode}〉,
〈{cardId , amount}, {errCode}〉,
〈{cardId}, {amount}〉}

As can be implied, these tuples denote the signatures of the “guarded” versions of the
debit, credit and getBalance operations in the Billing component. In Section 3.1 we
mentioned we assume that parameters with the same name and type are semantically
equivalent. Note that the input parameter ip is semantically equivalent to the input
parameter cardId of the operations signatures in f . Therefore, the add in helper function
in the guard composite fspec definition kept in only one occurrence. However, internally
in the assembly the parameter cardId is meant to be utilised in two different manners: as

21



 
 

the variable to be evaluated in the Guard ’s Boolean expression (e.g. if cardId ! = null)
and as the input parameter of the operation signatures provided by the composite.

Using the ADL notation introduced before, the resulting functional specification of
this first composition can be written as follows:

GuardedBillingComponent
op1 (in int cardId , in int amount ,out int errCode);
op2 (in int cardId , in int amount ,out int errCode);
op3 (in int cardId ,out int amount);

Once that the functional specification of this Guarded Billing Component has been
obtained, it can be used together with the one of the CardReader component to generate
the functional specification of the Coffee Card Cashier composite. Let f1 and f2 be the
Card Reader Component and the Guarded Billing Component functional specifications
respectively:2

-- Card Reader Component Instance, operations:

-- getCardId (out int cardId)

f1 = {〈∅, {cardId}〉}

-- Guarded Billing Component Instance, operations:

-- op1 (in int cardId, in int amount, out int errCode)

-- op2 (in int cardId, in int amount, out int errCode)

-- op3 (in int cardId, out int amount)

f2 = {〈{cardId , amount}, {errCode}〉,
〈{cardId , amount}, {errCode}〉,
〈{cardId}, {amount}〉}

Then, we will use the function corresponding to the Pipe connector to derive the set of
operation signatures in the functional specification of the Coffee Card Cashier composite:

pipe composite fspec : FSpec × FSpec × . . .× FSpec → FSpec

pipe composite fspec =
s1, s2, . . . , sn : Sig ;
f1, f2, . . . , fn : FSpec;
∀ si ∈ (s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn | sig match(si , si+1) = true •⋃

(s1,...,sn )∈
∏n

i=1
fi

sig bound(s1, s2, . . . , sn)

According to this function, we must first compute the cartesian product of functional
specifications f1 and f2, which results in:

2We use ∅ symbol to denote both no input parameters and no output parameters.
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f1 × f2 = {{〈∅, {cardId}〉, 〈{cardId , amount}, {errCode}〉},
{〈∅, {cardId}〉, 〈{cardId , amount}, {errCode}〉},
{〈∅, {cardId}〉, 〈{cardId}, {amount}〉}}

After this cartesian product has been computed, the function sig bound is applied to
each one the tuples of the cartesian product. The union of the resulting tuples as required
in

⋃

(s1,...,sn )∈
∏n

i=1
fi

sig bound(s1, s2, . . . , sn) is then:

pipe composite fspec(f1, f2) = {〈{amount}, {errCode}〉,
〈{amount}, {errCode}〉,
〈∅, {amount}〉}

Using the ADL notation introduced before, the resulting functional specification of
the Coffee Card Cashier composite can be written as follows:

CoffeeCardCashier
op1 (in int amount ,out int errCode);
op2 (in int amount ,out int errCode);
op3 (out int amount);

In this functional specification, op1, op2 and op3 are signatures abstracting the valid
sequences of operations to invoke within the composite’s constituents, i.e. getCardId -
credit , getCardId -debit and getCardId -getBalance respectively. Note that, the require-
ments (i.e. the input parameters) and the outcomes (i.e. the output parameters) of these
operation sequences are entirely derived from the semantics of the Pipe connector. The
helper function sig bound is utilised to remove the input parameter cardId in the result-
ing signatures, as it is produced internally in the composite. Thus for example to execute
the operations op1 and op2, which abstract the execution sequences getCardId -credit
and getCardId -debit respectively, it is only necessary to provide a value for the amt input
parameter (see Fig. 4.1 (a)).

Functional Specification of the Basic Dispenser Composite

As introduced in Section 4.1.1, the Basic Dispenser composite is a composite component
made of three dispenser components and one Sequencer connector. Let be f1, f2 and
f3 the functional specifications of the three instances of the Dispenser component to be
composed:

-- Dispenser Component Instance D1, operations:

-- emptyDispenser ()

-- setTemperature (in int temp, out int errCode)

-- add (in int shots, out int errCode)

-- dispense (in int shots, out int errCode)

f1 = {〈∅,∅〉,
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〈{temp}, {errCode}〉,
〈{shots}, {errCode}〉,
〈{shots}, {errCode}〉}

-- Dispenser Component Instance D2, operations:

-- emptyDispenser ()

-- setTemperature (in int temp, out int errCode)

-- add (in int shots, out int errCode)

-- dispense (in int shots, out int errCode)

f2 = {〈∅,∅〉,
〈{temp}, {errCode}〉,
〈{shots}, {errCode}〉,
〈{shots}, {errCode}〉}

-- Dispenser Component Instance D3, operations:

-- emptyDispenser ()

-- setTemperature (in int temp, out int errCode)

-- add (in int shots, out int errCode)

-- dispense (in int shots, out int errCode)

f3 = {〈∅,∅〉,
〈{temp}, {errCode}〉,
〈{shots}, {errCode}〉,
〈{shots}, {errCode}〉}

We will use the seq composite fspec function to generate the corresponding functional
specification:

seq composite fspec : FSpec × FSpec × . . .× FSpec → FSpec

seq composite fspec =
s1, s2, . . . , sn : Sig ;
f1, f2, . . . , fn : FSpec;

(s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn •
⋃

(s1,...,sn )∈
∏n

i=1
fi

sig concat(s1, s2, . . . , sn)

As in the previous case, to resolve the seq composite fspec function we first compute
the cartesian product of functional specifications f1, f2 and f3, which results in:

f1 × f2 × f3 = {{〈∅,∅〉, 〈∅,∅〉, 〈∅,∅〉},
{〈∅,∅〉, 〈∅,∅〉, 〈{temp}, {errCode}〉},
{〈∅,∅〉, 〈∅,∅〉, 〈{shots}, {errCode}〉},
{〈∅,∅〉, 〈∅,∅〉, 〈{shots}, {errCode}〉},
. . .
{〈{shots}, {errCode}〉, {〈{shots}, {errCode}〉, {〈∅,∅〉},
{〈{shots}, {errCode}〉, {〈{shots}, {errCode}〉, {〈{temp}, {errCode}〉},
{〈{shots}, {errCode}〉, {〈{shots}, {errCode}〉, {〈{shots}, {errCode}〉},
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{〈{shots}, {errCode}〉, {〈{shots}, {errCode}〉, {〈{shots}, {errCode}〉}}

After this cartesian product has been computed, the function sig concat is applied to
each one the tuples of the cartesian product. The union of the resulting tuples as re-
quired in

⋃

(s1,...,sn )∈
∏n

i=1
fi

sig concat(s1, s2, . . . , sn) is then:

seq composite fspec(f1, f2, f3) = {〈∅,∅〉,
〈{temp}, {errCode}〉,
〈{shots}, {errCode}〉,
〈{shots}, {errCode}〉,
. . .
〈{shots , shots}, {errCode, errCode}〉,
〈{shots , shots , temp}, {errCode, errCode, errCode}〉,
〈{shots , shots , shots}, {errCode, errCode, errCode}〉,
〈{shots , shots , shots}, {errCode, errCode, errCode}〉}

Using the notation introduced above, the functional functional specification of the
Basic Dispenser composite component can be denoted as follows:
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BasicDispenser
op1 ();
op2 (in int temp,out int errCode);
op3 (in int shots,out int errCode);
op4 (in int shots,out int errCode);
op5 (in int temp);
op6 (in int temp, in int temp,out int errCode,out int errCode);
op7 (in int temp, in int shots,out int errCode,out int errCode);
op8 (in int temp, in int shots,out int errCode,out int errCode);
op9 (in int shots);
op10 (in int shots, in int temp,out int errCode,out int errCode);
op11 (in int shots, in int shots,out int errCode,out int errCode);
op12 (in int shots, in int shots,out int errCode,out int errCode);
op13 (in int shots);
op14 (in int shots, in int temp,out int errCode,out int errCode);
op15 (in int shots, in int shots,out int errCode,out int errCode);
op16 (in int shots, in int shots,out int errCode,out int errCode);
op17 (in int temp,out int errCode);
op18 (in int temp, in int temp,out int errCode,out int errCode);
op19 (in int temp, in int shots,out int errCode,out int errCode);
op20 (in int temp, in int shots,out int errCode,out int errCode);
op21 (in int temp, in int temp,out int errCode,out int errCode);
op22 (in int temp, in int temp, in int temp,out int errCode,out int errCode,out int errCode);
op23 (in int temp, in int temp, in int shots,out int errCode,out int errCode,out int errCode);
op24 (in int temp, in int temp, in int shots,out int errCode,out int errCode,out int errCode);
op25 (in int temp, in int shots,out int errCode,out int errCode);
op26 (in int temp, in int shots, in int temp,out int errCode,out int errCode,out int errCode);
op27 (in int temp, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op28 (in int temp, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op29 (in int temp, in int shots,out int errCode,out int errCode);
op30 (in int temp, in int shots, in int temp,out int errCode,out int errCode,out int errCode);
op31 (in int temp, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op32 (in int temp, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op33 (in int shots,out int errCode);
op34 (in int shots, in int temp,out int errCode,out int errCode);
op35 (in int shots, in int shots,out int errCode,out int errCode);
op36 (in int shots, in int shots,out int errCode,out int errCode);
op37 (in int shots, in int temp,out int errCode,out int errCode);
op38 (in int shots, in int temp, in int temp,out int errCode,out int errCode,out int errCode);
op39 (in int shots, in int temp, in int shots,out int errCode,out int errCode,out int errCode);
op40 (in int shots, in int temp, in int shots,out int errCode,out int errCode,out int errCode);
op41 (in int shots, in int shots,out int errCode,out int errCode);
op42 (in int shots, in int shots, in int temp,out int errCode,out int errCode,out int errCode);
op43 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op44 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op45 (in int shots, in int shots,out int errCode,out int errCode);
op46 (in int shots, in int shots, in int temp,out int errCode,out int errCode,out int errCode);
op47 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op48 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op49 (in int shots,out int errCode);
op50 (in int shots, in int temp,out int errCode,out int errCode,out int errCode);
op51 (in int shots, in int shots,out int errCode,out int errCode);
op52 (in int shots, in int shots,out int errCode,out int errCode);
op53 (in int shots, in int temp,out int errCode,out int errCode);
op54 (in int shots, in int temp, in int temp,out int errCode,out int errCode,out int errCode);
op55 (in int shots, in int temp, in int shots,out int errCode,out int errCode,out int errCode);
op56 (in int shots, in int temp, in int shots,out int errCode,out int errCode,out int errCode);
op57 (in int shots, in int shots,out int errCode,out int errCode);
op58 (in int shots, in int shots, in int temp,out int errCode,out int errCode,out int errCode);
op59 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op60 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op61 (in int shots, in int shots,out int errCode,out int errCode);
op62 (in int shots, in int shots, in int temp,out int errCode,out int errCode,out int errCode);
op63 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);
op64 (in int shots, in int shots, in int shots,out int errCode,out int errCode,out int errCode);

As in the previous case, these signatures abstract the valid sequences of operation
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executions within the composite’s constituents. For example, op1 abstracts the execu-
tion sequence emptyDispenser -emptyDispenser -emptyDispenser while op64 abstracts the
execution sequence dispense-dispense-dispense. As before, we want to highlight that the
requirements (i.e. the input parameters) and the outcomes (i.e. the output parameters)
of these operation sequences are entirely derived from the semantics of the Sequencer
connector. Note how each one of the signatures in the resulting functional specification is
made up of a concatenation of the parameters of the composed components’ signatures by
applying the sig concat helper function. The issue of having duplicated elements in the
resulting InParam and OutParam sets of each one of the resulting signatures is because
of composing several instances of the same component types. This allows, for example,
invoking the sequence dispense-dispense-dispense with a different number of shots in each
one of the dispensers, see Fig. 4.1 (b).

We want to highlight that, although parameter names duplications it is semantically
valid in our approach, it is syntactically invalid at implementation-time, e.g. method
signatures in Java cannot have duplicated parameter names. Thus, when duplicated
parameters appear in an operation signature at implementation time it is necessary to
rename them somehow. An approach for renaming them could be that of adding a suffix
to the original ones to differentiate them, e.g. shots1, shots2 and shots3.

4.2 Robotics System

The second case study consists of implementing a pair of systems to control a LEGO
Mindstorms NTX educational robot [11] as the one depicted in Fig. 4.3. The LEGO
Mindstorms NTX is a popular robotics kit that provides an immediate opportunity to
develop systems to control robot interaction. The brain of a robot is the NTX, which is
an intelligent computer-controlled brick that lets a robot come alive and perform different
operations. The NTX has a set of output ports for attaching a variety of motors (e.g.
wheels, harms, etc.) and a set of input ports for attaching a variety of sensors (e.g.
distance, sound, light sensors, etc.).

Figure 4.3: A LEGO Mindstorms NTX educational robot.
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4.2.1 The Proposed Architectures

The first system to construct is a Basic Robot Control System. In this system the sensed
information from an ultrasonic sensor is utilised to drive the robot around searching to
avoid obstacles.3 The second system is an Advanced Robot Control System which is an
extension of the former where a sound sensor is added in order to stop the robot when a
sound within a specific the frequency is detected.

A widely utilised architectural style to develop control systems is the closed control
loop [29]. This style includes three main subsystems: a Controller Subsystem –which
continually receives information about the physical system and supplies continuous guid-
ance about the changes to be performed to maintain its properties; a Sensor Subsystem
–which is engaged in gathering information about the physical system and sending it to
the Controller and a Actuator Subsystem –which is involved in performing the decisions
taken by the Controller Subsystem.

Given the characteristics of the robot to control, we realised that the Actuator Sub-
system can be defined as a composite component. This composite is depicted in Fig. 4.4.
As can be seen, the Wheels Controller composite component is created out to two Wheel
Motor atomic components (WM1 and WM2) together with a Sequencer connector (SEQ).
Because the robot has only two wheels and they are moving up or down together at the
same rate in both systems, we find convenient to compose them together in a reusable
Wheels Controller composite component.

Controller
Wheels

WM1 WM2

SQ

Figure 4.4: A useful composite for the Robot Control Systems.

Fig. 4.5 (a) and (b) show the proposed architectures for the Basic Robot Control
System and the Advanced Robot Control System in terms of the Sensor and Actuator
Subsystems. Note that, in the depicted architectures there is not a Controller Subsystem
because in our approach to component composition the connectors encapsulate all the
decision making.

In the Basic and the Advanced Robot Control Systems’ architectures there is a Se-
quencer top-level connector (SQ2 and SQ3 in Fig. 4.5 (a) and (b) respectively), which
connects the Bluetooth atomic component (B) and a Condition Controlled Loop connec-
tor (CCL). The Condition Controlled Loop in turn connects a Pipe connector (P). This
particular arrangement of connectors allows activating the Bluetooth transceiver4 –when
the Sequencer invokes an operation in a Bluetooth atomic component B; and then launch-
ing the main loop of control of the systems –when the Sequencer invokes the Condition

3The ultrasonic sensor enables the robot to detect objects by measuring distance and detecting move-
ment.

4By activating the Bluetooth transceiver the robot can receive data from a remote computer.
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Controlled Loop. Note that the Condition Controlled Loop supports the cyclic execu-
tion of the Pipe connector which allows that the result of the execution in the Sensor
Subsystem be the input of the Actuator Subsystem.

Sensor SubsystemSubsystem
Sensor

(b)(a)

Actuator Subsystem

Wheels Controler
Actuator Subsystem

Wheels Controler

WM1

US

B

SS

WM2WM1 WM2

B

US

CCL

SQ1

CRSL

SQ

P

SQ1

CCL

SQ3

SQ

SQ2

SQ2

P

Figure 4.5: The proposed architectures for the (a) Basic Robot Control System and the
(b) Advanced Robot Control System.

In the Basic Robot System, depicted in Fig. 4.5 (a), the Sensor Subsystem comprises
only the Utrasonic Sensor component (US). On the other hand, the Actuator Subsystem
includes three copies of the Wheels Controller composite component assembled via a Selec-
tor connector (SL) and a Sequencer connector (SQ1). Thus once launched the main loop
of the system, the Pipe connector P will get first the distance reading via the execution
of a particular operation in the Sensor Subsystem and then it will pass up this data to
support the execution in the Actuator Subsystem. Based on the data received, the Selec-
tor connector determines which executions to perform to change the current state of the
wheels of the robot. Only one of two executions are possible: (i) if the distance value is
greater than 35 centimeters then the robot wheels are moved forward; (ii) otherwise the
robot wheels are rotated and moved forward again –note how this behaviour is achieved
by using a Sequencer connector which will call firstly the operation to rotate the wheels
and secondly the operation to move them forward again.

The Advanced Robot System is depicted in Fig. 4.5 (b). In this version of the sys-
tem the Sensor Subsystem is an assembly that includes one instance of the Utrasonic
Sensor component (US), one instance of the Sound Sensor component (SS) and one Se-
quencer connector (SQ1). Internally in this subsystem the Sequencer connector retrieves
the required data from the Utrasonic and Sound Sensors by sequentially executing the
corresponding operations in each one of them. The Actuator Subsystem includes three
copies of the Wheels Controller composite assembled via a Chain of Responsibility (CR).
Once launched the main loop of the system the Pipe connector will get the distance and
sound readings via an execution in the Sensor Subsystem, then it will pass up this data
to support the execution in the Actuator Subsystem. Based on the data received, the
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Chain of Responsibility connector determines which executions to perform from the fol-
lowing set: (i) if the distance value is greater than 35 centimeters then the robot wheels
are moved forward; (ii) if the distance value is lower than 35 centimeters then the robot
wheels are rotated and moved forward again –note how this behaviour is achieved by
using a Sequencer connector (SQ2) (iii) if the decibels value is grater than 60 then the
wheels are stopped and (iv) if the decibels value is lower than 60 then the wheels are
moved forward.

Now that we have presented the details of the Wheels Controller composite and the
manner in which it can be composed in the two Robot Systems, in the following section
we describe how the functional specification of this composite can be achieved by using
the proposed specification functions.

4.2.2 Composite Component Generation

As before, we will describe the functional specification of the Wheel component in a kind
of ADL notation:

wheelMotor
stop ();
forward ();
backward ();
setSpeed(in int speed);
rotate(in int count);
rotateNoWait(in int count);

Functional Specification of the Wheels Controller Composite

We have already mentioned that the Wheels Controller is a composite component created
out to two Wheel Motor atomic components (WM1 and WM2) and a Sequencer connector
(SQ). Then, Let be f1 and f2 the functional specifications of the two instances of the
Wheel Motor component to be composed:

-- Wheel Motor Component instance WM1, operations:

-- stop ()

-- forward ()

-- backward ()

-- setSpeed (in int speed)

-- rotate (in int count)

-- rotateNoWait (in int count)

f1 = {〈∅,∅〉,
〈∅,∅〉,
〈∅,∅〉,
〈{speed},∅〉,
〈{count},∅〉,
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〈{count},∅〉}

-- Wheel Motor Component instance WM2, operations:

-- stop ()

-- forward ()

-- backward ()

-- setSpeed (in int speed)

-- rotate (in int count)

-- rotateNoWait (in int count)

f2 = {〈∅,∅〉,
〈∅,∅〉,
〈∅,∅〉,
〈{speed},∅〉,
〈{count},∅〉,
〈{count},∅〉}

We will make use of the following function to generate the corresponding functional
specification:

seq composite fspec : FSpec × FSpec × . . .× FSpec → FSpec

seq composite fspec =
s1, s2, . . . , sn : Sig ;
f1, f2, . . . , fn : FSpec;

(s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn •
⋃

(s1,...,sn )∈
∏n

i=1
fi

sig concat(s1, s2, . . . , sn)

As in the previous case, to resolve the seq composite fspec function we first compute
the cartesian product of functional specifications f1 and f2, which results in:

f1 × f2 = {{〈∅,∅〉, 〈∅,∅〉},
{〈∅,∅〉, 〈∅,∅〉},
{〈∅,∅〉, 〈∅,∅〉},
{〈∅,∅〉, 〈{speed},∅〉},
{〈∅,∅〉, 〈{count},∅〉},
{〈∅,∅〉, 〈{count},∅〉},
. . .
{〈{count},∅〉, 〈∅,∅〉},
{〈{count},∅〉, 〈∅,∅〉},
{〈{count},∅〉, 〈∅,∅〉},
{〈{count},∅〉, 〈{speed},∅〉},
{〈{count},∅〉, 〈{count},∅〉},
{〈{count},∅〉, 〈{count},∅〉}}

After this cartesian product has been computed, the function sig concat is applied to
each one the tuples of the cartesian product. The union of the resulting tuples as re-
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quired in
⋃

(s1,...,sn )∈
∏n

i=1
fi

sig concat(s1, s2, . . . , sn) is then:

seq composite fspec(f1, f2, f3) = {〈{∅,∅}, {∅,∅}〉,
〈{∅,∅}, {∅,∅}〉,
〈{∅,∅}, {∅,∅}〉,
〈{∅, speed}, {∅,∅}〉,
〈{∅, count}, {∅,∅}〉,
〈{∅, count}, {∅,∅}〉,
. . .
〈{count ,∅}, {∅,∅}〉,
〈{count ,∅}, {∅,∅}〉,
〈{count ,∅}, {∅,∅}〉,
〈{count , speed}, {∅,∅}〉,
〈{count , count}, {∅,∅}〉,
〈{count , count}, {∅,∅}〉}

Using the IDL syntax introduced before, the functional functional specification of the
Basic Dispenser composite component can be denoted as follows:
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BasicDispenser
op1 ();
op2 ();
op3 ();
op4 (in int speed);
op5 (in int count);
op6 (in int count);
op7 ();
op8 ();
op9 ();
op10 (in int speed);
op11 (in int count);
op12 (in int count);
op13 ();
op14 ();
op15 ();
op16 (in int speed);
op17 (in int count);
op18 (in int count);
op19 (in int speed);
op20 (in int speed);
op21 (in int speed);
op22 (in int speed , in int speed);
op23 (in int speed , in int count);
op24 (in int speed , in int count);
op25 (in int count);
op26 (in int count);
op27 (in int count);
op28 (in int count , in int speed);
op29 (in int count , in int count);
op30 (in int count , in int count);
op31 (in int count);
op32 (in int count);
op33 (in int count);
op34 (in int count , in int speed);
op35 (in int count , in int count);
op36 (in int count , in int count);

In this functional specification, the signatures abstract the valid sequences of oper-
ation executions in the composite’s constituents. For example, op1 abstracts the exe-
cution sequence stop-stop while op36 abstracts the execution sequence rotateNoWait-
rotateNoWait .

As before, we want to highlight that although parameter names duplications it is
semantically valid in our approach, it is syntactically invalid at implementation-time.
Therefore, when duplicated parameters appear in an operation signature it is necessary
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to rename them somehow at implementation time. An approach for renaming them
could be that of adding a suffix to the original ones to differentiate them, e.g. count1
and count2.

4.3 Summary

In this chapter we have illustrated the usefulness of the defined functions via the devel-
opment of two case studies. The first case was about developing three different versions
of a Drink Selling Machine System. For this system a Coffee Card Cashier and a Basic

Dispenser were constructed. The defined composites were systematically and consistently
specified by using the defined functions in Chapter 3. The Coffee Card Cashier was utilised
two times, while the Basic Dispenser was utilised six times in the different versions of a
Drink Selling Machine.

The second case study was about building two versions of a Robotics System. For
this case study, a Wheels Controller composite component was created and utilised twice
for the development of the Robotics Systems.
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Chapter 5

Discussion, Conclusions and Future
Work

In this chapter we discuss the benefit of our approach and we state the conclusions and
future work.

5.1 Discussion

Management of both functional and non-functional properties is one of the main chal-
lenges in CBD community [26, 15]. Despite the former, the starting point in their manage-
ment, that is their specification, is not addressed in a systematic and consistent manner
in most CBD approaches. With few exceptions, current practice in CBD focuses on com-
ponents and leaves their interactions specified as lines, which usually represent procedure
calls or events [4, 20]. However, practical systems have quite sophisticated rules about
component interaction. Therefore, and as it was illustrated in Section 1.2, such lines
are not enough for defining a method for systematically and consistently deriving the
specifications of functional and non-functional properties of component assemblies.

Although our approach to derive composites’ functional specifications is tightly con-
nected to the issue of having first-class connectors and passive components, we believe
that the material presented in previous sections enables us to make some general obser-
vations as well as to discuss the potential usefulness, advantages and drawbacks of our
approach with respect to related work.

Passive components such as speech and sound recognisers, image detectors, temper-
ature sensors and so on have been widely utilised in the development of many software
systems. When using this type of components, the separation of computation from con-
trol becomes more evident; control flow does not originate from components but from the
architectural abstractions that manage them. On the other hand, the benefits of using
first-class abstractions to represent connections among components have been already
recognised [3, 21, 14, 9, 7, 28]. Thus, and despite the fact that first-class connectors and
passive components are not common in most component models, a component model like
ours is worth of considering for the development of component-based systems. We have
developed some sophisticated components-based systems based on the semantics of our
component model [31].
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Although the availability of first-class class connectors facilitated the development of

our approach, it seems difficult to develop a similar one for component models such as
SOFA 2 [6] and ProCom [27] or for architecture description languages such as ACME[5]
and UniCon[25]. All these works provide first-class connectors and support the generation
of composite components. In all these approaches the specification of the functional
interfaces of composite components is generated in an ad hoc manner (via delegation
connectors). Thus, the exact nature of the composite’s functional interfaces depends on
whether and which of interfaces inside the composite have been forwarded. In contrast,
in our approach the specification of the functional interfaces of composite component is
systematically and consistently generated. We can achieve it because our approach is
formalised in a set of simple connector-specific functions which take information from the
functional specifications of the composed components. It makes our approach to have an
algebraic basis which makes it more precise and objective.

As a corollary of the algebraic basis of our approach, the proposed functions can
be composed. The ones defined for basic composition connectors can be reused in the
definitions for the composite ones as shown in Chapter 3.

Although in this technical report the focus was given to how to use our functions
to composite component specification, they can be also used to generate the operation
signatures in the FSpecs of subsystems and final systems. In order to do that, a system
developer can reduce the number of operation signatures to be consider as part of the
FSpecs of the composed components and then apply the corresponding function.

To illustrate the former, consider the case of building the Cashier Subsystem in
Fig. 4.2 (b). This subsystem requires the Product Manager atomic component PMgr,
the Coffee Card Cashier composite component (which we have generated in Section 4.1.2)
and the Coin Box component CB. These three units are composed via the Exclusive
Choice Pipe composite connector. Consider then the following functional specifications
of the components in this subsystem:

productManager
addProduct (in int productId ,out errCode);
getPrice (in int productId ,out amount);
deleteProduct (in int productId ,out errCode);

CoffeeCardCashier
op1 (in int amount ,out int errCode);
op2 (in int amount ,out int errCode);
op3 (out int amount);

coinBox
collectCoins (in int amount ,out int errCode);
giveChange (in int change,out errCode);
addCoins (out int amount);
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 As described in Section 4.1.1, this version of the Cashier Subsystem allows the cus-

tomer to buy drinks by using either coffee cards or cash. This first option is supported
by the Coffee Card Cashier composite, while the second one is supported by the Coin Box
component CB. When the sell a drink function is required, internally in the Cashier Sub-
system the Exclusive Choice Pipe connector ECP1 will first retrieve the drink’s price by
executing the corresponding operation in the Payment Manager Component PMgr and
then, based on the payment method selected by the customer, it will direct the execution
of the charge to either the Coffee Card Cashier or the Coin Box component CB. Thus, for
generating the functional specification of this subsystem we do not require to consider all
the operations in all the components but only a subset of them:

-- Product Manager Atomic Component. Operation getPrice.

f1 = {〈{productId}, {amount}〉}
-- CoffeeCardCashier Composite Component. Operation getCardId-debit.

f2 = {〈{amount}, {errCode}〉}
-- CoinBox Atomic Component. Operation collectCoins.

f3 = {〈{amount}, {errCode}〉}

We also require the value to be evaluated for the execution of the methods getCardId
and collectCoins payment method:

-- The set of input parameters

p = {paymentMethod}

Next we show by using the ecPipe composite fspec function on these reduced functional
specifications we can generate the functional specification of this Cashier Subsystem.

ecPipe composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

ecPipe composite fspec =
λ f1, f2, . . . , fn : FSpec;
λ p : InParam | #p = #(f1 × f2 × . . .× fn); •
pipe composite fspec(f1, sel composite fspec(p, f2, . . . , fn))

As this function uses the sel composite fspec and pipe composite fspec functions, we will
first to solve the first one

sel composite fspec : InParam × FSpec × FSpec × . . .× FSpec → FSpec

sel composite fspec =
λ s1, s2, . . . , sn : Sig ;
λ f1, f2, . . . , fn : FSpec;
λ p : InParam | #p = #(f1 × f2 × . . .× fn);
(s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn •
n⋃

i=1

add in(ipi , si) | ipi ∈ p ∧ si ∈
⋃

(s1,...,sn )∈
∏n

i=1
fi

sig union(s1, s2, . . . , sn)
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As in the previous examples, to resolve the sel composite fspec function we first compute
the cartesian product of functional specifications f2 and f3, which results in:

f2 × f3 = {〈{amount}, {errCode}〉, 〈{amount}, {errCode}〉}

After this cartesian product has been computed, the function sig union is applied to each
one the tuples of the cartesian product, which results in:

sig union(〈{amount}, {errCode}〉, 〈{amount}, {errCode}〉) = 〈{amount}, {errCode}〉

After this function has been resolved, we resolve the last part of the function
n⋃

i=1

add in(ipi , si),

which results in:
sel composite fspec = 〈{paymentMethod , amount}, {errCode}〉

We will call f23 to this functional specification for clarity purposes. Once f23 has been
calculated, we can proceed to calculate the pipe composite fspec function

pipe composite fspec : FSpec × FSpec × . . .× FSpec → FSpec

pipe composite fspec =
λ s1, s2, . . . , sn : Sig ;
λ f1, f2, . . . , fn : FSpec;
∀ si ∈ (s1, s2, . . . , sn) ∈ f1 × f2 × . . .× fn | sig match(si , si+1) = true •⋃

(s1,...,sn )∈
∏n

i=1
fi

sig bound(s1, s2, . . . , sn)

This function requires calculating the cartesian product of the following specifications:

-- Product Manager Atomic Component. Operation getPrice.

f1 = {〈{productId}, {amount}〉}
-- CoffeeCardCashier Composite Component. Operation getCardId-debit.

f23 = {〈{paymentMethod , amount}, {errCode}〉}

which results in:

f2 × f23 = {〈{productId}, {amount}〉, 〈{paymentMethod , amount}, {errCode}〉}

After this cartesian product has been computed, the function sig bound is applied to each
one the tuples of the cartesian product. The union of the resulting tuples as required in⋃

(s1,...,sn )∈
∏n

i=1
fi

sig bound(s1, s2, . . . , sn) is then:

pipe composite fspec(f1, f23) = {〈{productId , paymentMethod}, {errCode}〉}
Using the ADL notation introduced before, the resulting functional specification of the
Cashier Subsystem can be written as follows:
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CoffeeCardCashier
op1 (in int productId , in int paymentMethod ,out int errCode);

This functional specification contains only one operation as there is only one manner to
use this subsystem. In contrast to a composite, this subsystems is not intended for reuse.
Thus, by receiving the input parameters productId and the paymentMethod the system
can then process the corresponding payment.

Our proposal may have some potential drawbacks though. For example, in the case
study we observed that depending on the number of operations provided by the com-
posed components, the application of some functions could explode potentially the num-
ber of operations in the resulting interfaces. In our case study the application of the
seq composite fspec on the interfaces of the three dispenser components resulted in an
interface containing 64 operation signatures. Taking into consideration the domain con-
text for which the composite component is built, only 4 out of the 64 operations make
sense. These operations are the ones abstracting the sequential execution of the same
operation in each one of the dispenser components, i.e. emptyDispenser -emptyDispenser -
emptyDispenser, setTemperature-setTemperature-setTemperature, add -add -add and dis-
pense-dispense-dispense. Although by using our tool a composite developer can reduce
the number of signatures of the resulting functional specification by keeping these execu-
tion sequences that are invalid or undesirable away, it could be desirable to automatically
support this “filtering” by using some sort of enhanced behavioural information, e.g. fea-
ture models, behaviour protocols, etc.

An issue that we have not solved is the one of shared data. In some cases within a
composite component, data needs to be defined to be shared between its constituents.
So this data is important to interface generation. We are in the process of investigating
solutions in this context.

5.2 Conclusions and Future Work

We presented our progress on developing an approach to systematically and consistently
supporting interface specification of composite components. Specifically, we focused on
the generation of composites’ functional specifications. The composites are constructed
via a connectors’ catalogue, which was defined within the context of a new component
model. The specification approach is based on a set of connector-specific functions,
which allow deriving composites’ functional specifications in a systematic and consistent
manner. Although this piece of work is only at an initial stage it has an algebraic basis
which makes it more precise and objective. We believe that it can be easily automated
and can be very fast in terms of computations.

In the near future, we plan to extend our approach to deal with more sophisticated
behavioural information, e.g. constraints on their temporal ordering of executions. Sim-
ilarly, we have started to work on a similar approach to derive other elements of the
composites’ interfaces, i.e. the non-functional properties and the information about the
deployment environment.
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